
130

if (from Whom!= MYSELF) image is updated only if the request doesn't come from the object itself
piePresSetRatio (whichPie, ratio);}a method of the Presentation part to update the image according to the ratio

pieEvent (whichPie, theEvent) to handle events from devices
{case (theEvent.what)

MOUSE: mouse (whichPie, theEvent); }
mouse (whichPie, theEvent) a local procedure to process mouse events

{case (wheremouse = mouseloc(whichPie, theEvent.where))
INCONTENT: a mouse event inside the circle signals a dynamic displacement

if (objlsValid(whichPie,MOVE)) to determine whether the object currently accepts to be moved around
pieMove(whichPie, theEvent.where);

INNEEDDLE: a mouse event inside the needle signals a dynamic displacement of the needle
if (objlsValid(whichPie,MOVENEEDLE)) piePresTrackneedle(theEvent. where, ratio);
if (piePreshaschanged(whichPie, ratio))

{ratiotoval(ratio, val); if the needle has moved, then the ratio has changed and the abstract
pieAbsSetVal (whichPie, val, MYSELF)} value needs to be updated.

if (objlsTalkative(whichPie) returns true if the object has to signal ahanges of its abstract interface.
{ ... ; build msg to notify the ancestor of a change in the abstract interface
Obj SendAncestor(whichPie, msg)} ;given a message and an object, call the appropriate method of

the object's ancestor ... }
One operator for the super pie chart described in 4.1
spieSetVal (whichSpie, val, from Whom) to set the current abstract value of a super pie chart

{case (from Whom)
ANCESTOR: the request comes from the ancestor

... , build appropriate message to update the value of son] (i.e. the pie chart)
objSendSon(objSon(whichSpie, son1), msg);
... , build appropriate message to update the value of son2 (i.e. the string)
objSendSon(objSon(whichSpie, son2), msg);

SON: the request comes from a son
objSendSon(theotherson, msg);
if (objlsTalkative) objSendAncestor(whichSpie, msg)}

References
[Barthet 86] M. F. Barthet; C. Sibertin-Blanc: La modelisation d'applications interactives adaptees aux utilisateurs par de

reseaux de Petri a structure de donnee; Actes du 3eme Colloque-Exposition de Genie Logiciel, Versailles, mai 1986, 117-136
[Bleser 82] T. Bleser, J.D. Foley: Towards Specifying and Evaluating the Human Factors of User-Computer Interfaces; Huma

Factors in Computer Systems Proceedings, march, 1982.
[Bobrow 83] D.G. Bobrow, M. Stefik: The Loops Manual; Tech. report KB-VLSI-81-13, Knowledge Systems Area, Xerox, Pal

Alto Research Center, 1981.
[Buxton 83] W. Buxton, M.R. Lamb, D. Sherman, K.C. Smith: Towards a Comprehensive User Interface Management Systen

Computer Graphics 17(3), July 1983, 35-42.
[Ciccarelli 84] E.C. Ciccarelli: Presentation Based User Interfaces, Technical Report 794, Artificial Intelligence Laboratory

Massachusetts Intelligence Laboratory, August, 1984.
[Coutaz 86] J. Coutaz: La Construction d'Interfaces Homme-Machine, Rapport de Recherche IMAG-LGI, RR 635-I, nov. 1986.
[Garret 86] N. L. Garret, K. E. Smith: Building a Timeline editor from Prefabs Parts: The Architecture of an Object-Oriente

Application; Proceedings OOPSLA'86, Sigplan Notices 11(21), November 1986, 202-213.
[Goldberg 84] A. Goldberg, D. Robson : Smalltalk-80 : The Interactive Programming Environment; Addison-Wesley Publ

1984.
[Hayes 83] P.J. Hayes, P. Szekely: Graceful Interaction through the Cousin Command Interface; International Journal of Ma

Machine Studies 19(3), September 1983, 285-305.
[Hayes 85] P.J. Hayes, P. Szekely, R. Lerner: Design Alternatives for User Interface Management Systems Based on Experienc

with Cousin; Proceedings of the CHI'85 Conference, The Association for Computing Machinery Publ., April 1985,169-175.
[Hullot 86] J.M. Hullot: SOS Interface, un Generateur d'Interfaces Homme-Machine, Actes des Journees Afcet-Informatique sr

les Langages Orientes Objet, Bigre+Globule, 48, Publ. IRISA, Campus de Beaulieu, 35042 Rennes, janvier, 1986, 69-78.
[Lieberman 85] H. Liebetman: There's More to Menu Systems than Meets the Screen; SIGGRAPH'85, 19(3), 181-189.
[Myers 86] B. Myers, W. Buxton: Creating Highly-Interactive and Graphical User Interfaces by Demonstration; SIGGRAPH'8(

20(4), 1986, 249-257.
[Olsen 83] D.R Olsen, E.P Dempsey: Syngraph: A Graphical User Interface Generator; Computer Graphics, July 1983, 43-50.
[Schmucker 86a] K. Schmucker: MacApp: An Application Framework; Byte 11(8), 1986, 189-193.
[Schmucker 86b] K. Schmucker: Object-Oriented Languages for the Macintosh; Byte 11(8), 1986, 177-188.
[Schulert 85] A.J. Schulert, G.T. Rogers, J.A. Hamilton : ADM - A Dialog Manager; Proceedings of the CHI'85 Confer\!nct

The Association for Computing Machinery Publ., April 1985, 177-183.
[Sibert 86] J.L. Sibert, W.D. Hurley, T.W. Bleser; An Object Oriented User Interface Management System; SIGGRAPH'8(

20(4), 1986, 259-268.
[Tanner 83] P. Tanner, W. Buxton: Some Issues in Future User Interface Management Systems (UIMS) Development. IFI

Working Group 5.2 Workshop on User Interface Management, Seeheirn, West Germany, November 1983.
[Tanner 86] P. Tanner, S.A. Mackay, D. A. Stewart: A Multitasking Switchboard Approach to User Interface Managemen

SIGGRAPH, 20(4), 1986, 241-248.
[Tesler 86] L. Tesler: Programming Experiences; Byte, 11(8), August 1986, 195-206.
[Wasserman 85] A. Wasserman: Extending State Transition Diagrams for the Specification of Human-Computer Interactior

IEEE Transactions on Software Engineering, 11(8), August 1985.
[Wong 82] P.C.S. Wong, E.R. Reid: Flair- User Interface Design Tool; ACM Computer Graphics, 16(3), July 1982, 87-98.

The ZOO Metasystern:
A Direct-Manipulation Interface

to Object-Oriented Knowledge Bases

Dr. Wolf-Fritz Riekert
Siemens AG, K D ST SP 311, AI Programming Systems

Otto-Hahn-Ring 6, D-8000 Mlinchen 83

Abstract

Transparency and adaptability are important criteria for the usability of computer systems.

It is not easy to fulfill these criteria in ill-structured domains by using traditional software

concepts. The object-oriented approach, however, lillows the construction of metasystems

which enable the user to understand and manipulate the underlying conceptual schemata of

a:p. application system.

zoo1 is a metasystem for the application expert. ZOO visualizes the contents of an

object-oriented knowledge base in a graphic, spatial representation as a net of icons. ZOO

allows its user to inspect, manipulate, create and delete the components of. a knowledge

base through direct manipulation of graphic objects.

1. Introduction

There is an increasing demand for computer solutions in ill-structured problem domains

such as office automation, planning, design, or diagnosis. In general there is no formal

description of the problem domain and the goals of operation are not well-defined. So it

is hard or even impossible to find definite general methods for solving problems in these

environments.

1The author was a. member of the Research Group INFORM at the University of Stuttgart, when
he developed the ZOO system. The Research Group INFORM is supported by the German Federal
Ministery of Research and Technology (BMFT) under contract ITW8404A/ 4, as part of the joint
project WISDOM. The development of the ZOO system was supported by the TA Triumph Adler
AG, Ni.irnberg, West Germany.

132

~ I COtlTEtHS

Figure 1: The ZOO metasystem

Therefore the usage of computer software for non-trivial problems in these domains imposes

a lot of difficulties on the end user of the system.

• Due to the lack of well-defined goals and methods it is hard for a human to accept
the solutions found by the computer. The user does not know the underlying con­

ceptual model of the decisions made by, a computer. The program documentation
does not help, because it usually describes the software structure of the system rather
than the concepts of the application domain.

• Since the application domain is not sufficiently formalized the computer software used
is destined for incompleteness. The system designer can only follow heuristics which

133

still have to be verified in the field. The use of the system will reveal new criteria
which require a modification of the software by a software specialist. A permanent
communication problem between the user and the programmer of the software is the
result, taking a lot of time. Therefore most of the users would rather perform the
necessary modifications by themselves.

So there are two criteria with increasing importance for the evaluation of complex software

systems: the transparency and the adaptability of the system. These criteria are not ful­

filled while using traditional application systems in ill-structured problem domains. The

reason for this deficiency is the way knowledge is represented in traditional systems: Since

the knowledge is encoded in a collection of procedures and data structures, its only use is

the run of the application system. For all other purposes, the code of a program is a

poor representation of knowledge: neither does it help much if we need documentation,

explanation or help for the usage of the system nor does it support its augmentation or

modification by itself.

Object-oriented application systems, however, offer a way out of this problem. The be­

havior of these systems is driven by a knowledge base consisting of objects rather than by

a collection of procedures. There is no limit for the interpretation of the knowledge en­

coded in objects, so it is possible to design systerri components which access and manipu­

late the contents of an object-oriented knowledge base. Such system components operate

on a higher level of abstraction than the underlying application system, therefore they are

called metasystems2• Having access to the knowledge sources used by the application sys­

tem, metasystems are able to explain and to control the behavior of an application system.

The Z003 system presented in this paper is a metasystem which serves two purposes: It

is both an instrument for inspecting the contents of an object-oriented knowledge base in a

two-dimensional graphic representation and a tool for the modification of knowledge bases

by direct manipulation of sensitive screen objects. Graphics is a very popular means used

for problem specification and for the documentation of technical systems, so it is used in

the ZOO system. ZOO intentionally appears to its user as simple as a system for the dis­

play and the construction of business graphics, whereas its functionality is much broader.

Every graphic object displayed by the ZOO system represents an item of the system­

internal knowledge base. Creating a new graphic object on the screen is a request for

generating a new component of the knowledge base as well. Supporting the construction

of a graphic diagram and a knowledge base at the same time, ZOO connects the processes

2The first knowledge-based metasystems were developed in Stanford: Typical examples are the sys­
tems EMYCIN/Teiresias and Meta-DENDRAL which are metasystems for the known expert systems
MYCIN and DENDRAL [3]

3The name ZOO stands for a Zoo Of Objects.

134

of specification, implementation and documentation of knowledge-based systems in parallel.

Thus ZOO may also be considered as a rapid-prototyping tool.

ZOO is running on a VAX 11/780 under Berkeley UNIX 4.2 and requires a BBN BitGraph

terminal as communication device. ZOO makes use of the window-system WLISP [5] and

the object-oriented language ObjTalk [13] which were both developed by members of the

research group INFORM. The basic implementation language of all software components is

Franz Lisp [7] .

2. External Representation of Knowledge

In our software systems, we use ObjTalk [13; 14], an object-oriented language, for the

representation of knowledge. ObjTalk is a language which combines the actor concept and

the message passing paradigm of Hewitt [10] and the frame ideas of Minsky [12] in a

way similar to KL-ONE [2] or LOOPS [1].

ObjTalk allows the representation of object-level knowledge about concrete facts as well as

meta-level knowledge4 about abstract concepts:

• Concrete facts about the real world may be represented by ObjTalk obJects and their
state. ObjTalk provides slots for every object in order to store properties and rela­
tions to other objects. ObjTalk allows the classification of objects: Every object

belongs to a class of which it is called an instance.

• Abstract Concepts may be represented by a special kind of ObjTalk objects, called
conceptual obJects. Classes are conceptual objects representing the common properties
of their instances. All classes are forming a specialization hierarchy. Classes provide
slot descriptions, rules and methods which are conceptual objects as well.

For viewing and manipulating an object, we need an external representation for it.

ObjTalk provides such a format, yet it is dedicated to programmers and consists of a Lisp­

expression which would define the object when it is loaded or evaluated. This format is

not suited for the end user of a system implemented in ObjTalk.

If there is a terminal with a high-resolution screen, there are new ways of displaying the

internal objects and their state in a representation closer to the needs of the user. This

was shown by the success of the new graphic user-interfaces which came up with Xerox'

Star computer [17] and are a standard now in a lot of small computers. Objects and

operations originating in an office environment are visualized by graphic symbols, so-called

icons and may be activated and processed by direct manipulation [16; 11]. Icon-based

4The terms "object-level knowledge" and "meta-level knowledge" have been introduced by R. Davis
(4]

135

direct-manipulation interfaces are very easy to learn and understand. A Star-like interface,

however, does not fulfill all the needs of external knowledge representation:

• The Star interface is limited to the office world, while we want to represent objects
of arbitrary domains.

• The Star interface supports only hierarchical relations, e.g. between a document and
its folder, but a universal system should represent arbitrary relations between objects.

• It must be possible, to represent abstract concepts (such as the concept folder), not
only concrete objects (such as the folder XYZ).

On the other side there are knowledge engineering tools which meet most of these require­

ments, but suffer from a poor use of graphics, such as the SMALL TALK-Browser [8].

KEE and LOOPS only display specialization and instantiation hierarchies of objects, they

do not support other relations between objects. Moreover, their graphic representations

cannot be changed through direct manipulation. KEE's SIMKIT system possesses a com­

plete direct-manipulation interface, yet it is only useful for simulation applications. The

idea behind the ZOO system described here is to combine the graphic capabilities of an

icon-based system with the universality of a knowledge engineering system.

3. The ZOO Graphic Representation Format

Common objects and conceptual objects of the knowledge representation language ObjTalk

may be represented in a graphic form by the ZOO system. For this purpose ZOO

provides two kinds of graphic primitives: icons and arrows.

Icons are used for the graphic representation of objects. Usually such an icon has a square

shape. It is labelled by the name of the object. It contains a graphic symbol which, in

general, visualizes the class membership of the object. Relations to other objects are

represented by labelled arrows pointing to the graphical representation of the corresponding

objects while the label of the arrow contains the name of the relation. Figure 2 shows the

graphic representation of an object, a German computer system, in relation to other ob­

jects. In summary, object-level knowledge appears as a network of icons as nodes and

labelled arrows as links.

Meta-level knowledge consisting of a knowledge base of conceptual objects is represented

basically the same way as object-level knowledge. Classes appear as icons which are sur­

rounded by a fat border (see figure 3). By default, the graphic symbol used for the

visualization of the class will be transmitted to its instances and to its inferiors in the

specialization hierarchy. The specialization hierarchy of classes is represented internally by

a relation with the name "superc", so it may be displayed using labelled arrows as

described above. The other conceptual objects, such as slot descriptions, methods and rules

are linked to the network of classes by labelled arrows representing the respective relations.

136

Figure 2: The object System-M in relation to other objects

PRODUCT

CLASSI F'r')-<E--F.:IJLES METHODS :::. ,I COMPARE:

~~ .--~CPa::;IJ ---.,, J I PIJF.:POSE

I DEVICES

Figure 3: The class computer and its surrounding conceptual objects

PRODUCT

PRODUCTS

l
"T"

LJ -sLors----:;,..1 PF.:ODUCER 1--n'PE---?--.-11 r.~J II
~ I

DEFAUrALUE

Figure 4: The slot description producer from class product

137

Slot descriptions appear as flat rectangles enclosing the name of the slot. Again there

may be relation arrows originating from slot descriptions to other icons, displaying the

type, the default value and the inverse relation (see figure 4). In a similar way ZOO

visualizes methods and rules within the network of conceptual objects.

4. The ZOO metasystem

The ZOO metasystem may be considered as a user-interface to the whole knowledge

represented by ObjTalk objects in a software system. The purpose of ZOO is to present

the contents of a knowledge base in the graphic format described above, allowing the user

to modify it through direct manipulation. ZOO is operating on the in-core representation

of knowledge bases, so it is possible to make changes to a knowledge-based system at run­

time. ZOO is able to access conceptual objects representing abstract concepts as well as

concrete instances representing facts about the application domain.

The graphic representation of a knowledge base is displayed in a rectangular region on the

screen, a so-called zoo-window (see figure 1). Each icon represents an object, each labelled

arrow represents a relation between objects of the knowledge base. One of these graphic

objects (icons or labelled arrows) may be selected· by touching it with a pointing device

(mouse). All object-specific operations apply to the selected item. The applicable opera­

tions are displayed on the border of the zoo-window as function-icons, which can also be

activated with the mouse. Objects may be created by copying or instantiating the selected

object, relations between objects may be established by drawing arrows from the selected

object to other objects. The names of these relations may be selected from a pop-up

menu, the contents of which is derived from the class of the selected object. In addition

there are functions for storing and retrieving knowledge bases, for viewing objects, for

deleting objects, for forgetting relations, and for changing the appearance and position of

objects.

There is no central display manager for the graphic objects inside a zoo-window, the dis­

play management is done in an object-oriented way instead. Each icon and each labelled

arrow is itself represented by an ObjTalk object, a so-called interaction object [9]. Inter­

action objects establish the link between internal objects and their graphic representation

on the screen. Therefore interaction objects represent two kinds of knowledge:

• An interaction object possesses graphic knowledge, it describes the position and the
appearance of a screen object. This knowledge will be used for the purposes of dis­
playing and activating the graphic objects.

• An interaction object possesses knowledge about the existence of an internal object or
about one of its properties. Interaction objects provide methods for the manipulation
of their internal counterparts.

138

Within a zoo-window there are different classes of interaction objects which are used for

the graphic presentation of the various kinds of knowledge base objects and their interrela­

tions as described in section 3. The function-icons on the border of a zoo-window do not

visualize the objects of the target knowledge base; they represent the functions of the ZOO

system instead. Most of these functions apply to the selected graphic object inside the

zoo-window. The effect of these functions depends on the class of the selected interaction

object. Because of this context-dependent behavior, the number of functions may be kept

small, making the user-interface simple and powerful at the same time.

5. Conclusions

The consideration of knowledge aspects leads to a new viewpoint in man-machine com­

munication. The problem of constructing understandable user-interfaces can be reduced to

the question of an external knowledge representation adapted to the user's point of view.

Our answer to this question is the idea of a two-dimensional representation of knowledge

by graphic objects on a high-resolution screen, being subject to direct manipulation with a

pointing device.

In this context, an integrated object-oriented software architecture which includes both the

user-interface and the system kernel turns out to be very advantageous. An object-oriented

user-interface allows the use of interaction objects which appear to the user as mouse­

sensitive graphic objects on the screen of a computer terminal. But within the system

they are active data objects communicating with the internal objects of the knowledge

base. If the system kernel is driven by an object-oriented knowledge base every interaction

object finds a unique internal counterpart and this guarantees a close connection between

the internal and the external representation of knowledge.

The object as a fundamental concept of programming and representing knowledge makes it

possible to construct metasystems for visualizing and modifying the facts and the concepts

of an application system. Together with advanced techniques of man-machine communica­

tion, the object-oriented knowledge-based approach makes it easy to construct application

systems which are more transparent than traditional programs and can be adapted by the

user in many parts. Therefore this approach contributes a lot to the development of user­

centered software environments.

139

References

[1] D.G. Bobrow, M. Stefik: "The LOOPS Manual". Technical Report KB-VLSI-81-83, Knowledge
Systems Area, Xerox Palo Alto Research Center (PARC), 1981.

[2] Brachmann. R. et al.: "KL-ONE Reference Manual". BBN-Report 3848, BBN, July, 1978.

[3] B.G. Buchanan, E.H. Shortliffe: The Addison-Wesley Series in Artificial Intelligence: "Rule­
Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming
Project 11• Addison-Wesley, Reading, Ma., 1984.

[4] R. Davis, D.B. Lenat: Advanced Computer Science Series: "Know/edge Based Systems m Ar­
tificial Intelligence 11• McGraw-Hill, New York, 1982.

[5] F. Fabian Jr., A. C. Lemke: "Wlisp Manual 11• Technical Report CU-CS-302-85, University of
Colorado, Boulder, February, 1985. Translated by V. Patten and C. Morel.

[6] G. Fischer, M. Schneider: "Knowledge-based Communication Processes in Software
Engineering". In Proceedings of the 7th International Conference on Software Engineering,
pp 358-368. Orlando, Florida, March, 1984.

[7] J.K. Foderaro, K.L. Sklower: "The FranzLisp Manual 11• Technical Report, University of Cali­
fornia, Berkeley, 1982.

[8] A. Goldberg: "SMALLTALK-80, The Interactive Programming Environment". Addison-Wesley,
Reading, Ma., 1984.

[9] M. Herczeg: "INFORM-Manual: Icons 11 • Institut flir Informatik, Universitat Stuttgart, 1985.

[10] C. Hewitt: "Viewing Control Structures as Patterns of Passing Messages 11• Artificial Intel­
ligence Journal 8, pp 323-364, 1977.

(11] E.L. Hutchins, J.D. Hollan, D.A. Norman: "Direct Manipulation Inter faces 11• In D.A. Norman,
S. Draper (editors), User Centered System Design: New Perspectives on Human-Computer In­
teraction. Lawrence Erlbaum Associates Ltd., 1986.

[12] M. Minsky: "A Framework for Representing Knowledge 11• In P .H. Winston (editor), The
Psychology of Computer Vision, pp 211-277. McGraw Hill, New York, 1975.

[13] C. Rathke: "ObjTalk Primer 11• Translated Version by A. C. Lemke, V.M. Patten, C.P. Morel,
Dept. of Computer Science, University of Colorado, Boulder - Technical Report CU-CS-290-85
-, INFORM, lnstitut flir lnformatik, Universitat Stuttgart, 1985.

[14] C. Rathke: "ObjTalk. Reprasentation von Wissen in einer objektorientierten Sprache 11
• Disser­

tation, Fakultat Mathematik und Informatik der Universitat Stuttgart, Oktober, 1986.

[15] W.-F. Riekert: "Der graphische Wissenseditor ZOO - ein Metasystem zur Visualisierung und
Manipulation von Wissensbasen 11• WISDOM-Forschungsbericht FB-INF -86-9, lnstitut fiir lnfor­
matik, Universitat Stuttgart, 1986.

[16] B. Shneiderman: "Direct Manipulation: A Step Beyond Programming Languages 11
• IEEE

Computer 16(8), pp 57-69, August, 1983.

[17] D.C. Smith, Ch. lrby, R. Kimball, B. Verplank: "Designing the Star User Inter face 11• BYTE,
April, 1982.

Ill

I

ut r
ill

1 n

Edited by G. Goos and J. Hartmanis

76

J. Bezivin J.-M. HuHot
P. Cointe H. Lieberman (Eds.)

E 0 P' 7
European nference on
Object-Oriented rogramming
Paris, France, June 15-17, 1987
Proceedings

Springer-Verlag
Berlin Heidelberg New York London Paris Tokyo

